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Antioxidant Hybrid Compounds: A Promising Therapeutic Intervention in 
Oxidative Stress Induced Diseases 
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Abstract: Reactive oxygen species/nitrogen species (ROS/RNS) are major causative agents of oxidative stress related 
diseases such as neurodegenerative, cancer, cardiovascular, and inflammation via intracellular signal transduction 
pathways. Synthetic modification of antioxidants and development of hybrid compounds by conjugation or integration of 
two or more moiety opened a new era in development of antioxidant based therapeutics. In this review, our attention is 
focused on structural, chemical and biochemical feature of free radicals, description of mechanistic modulation in 
signaling pathways by antioxidants and establishment of relationship between structural and biological accepts of 
antioxidant hybrid systems (1,2-dithiolone, �,�-unsaturated carbonyl, cinnamate based hybrids and miscellaneous 
hybrids).  
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INTRODUCTION 

 Reactive species (RS), including reactive oxygen (ROS) 
and reactive nitrogen species (RNS), are constantly generated 
during normal oxidative metabolism in aerobic organisms 
and in response to environmental stimuli. These are small 
molecules or ions formed by the incomplete reduction of 
oxygen, and include free radicals such as superoxide anion 
(O2

•�), hydroxyl radical (OH•), peroxyl radical (RO2
•), and 

alkoxyl radical (RO•) as well as non-radical species that are 
oxidizing agents and/or easily converted into radicals, such 
as hydrogen peroxide (H2O2), hypochlorous acid (HOCl), 
ozone (O3), and singlet oxygen (1O2) [1]. ROS are generated 
by exogenous source (UV light, ionizing radiation and 
inflammatory cytokine) and endogenous source such as 
mitochondria [2], xanthine oxidase [3], neutrophils, 
eosinophils, macrophages, CP450 [4], microsomes and 
peroxisomes [5]. Several other factors have also been 
investigated to elicit production of ROS [6]. Furthermore, 
some of the transition metals such as iron, copper, 
chromium, cobalt, vanadium, cadmium, arsenic, and nickel 
have been investigated to play an important role in the 
generation of free radicals via Fenton chemistry [7-9]. Under 
physiological conditions, intricate defense systems composed of 
antioxidant enzyme systems (superoxide dismutase, catalase, 
and glutathione peroxidase) and non-enzymatic antioxidants 
such as glutathione (GSH), vitamins (A, E and C), melatonin, 
uric acid, lipoic acid, carotenoids, and polyphenols (flavonoids, 
curcumin, resveratrol and others), impart balance between 
generation and neutralization of reactive oxygen species  
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[10, 11]. Inadequate antioxidant defense systems, improper 
intake of dietary antioxidant supplements and excessive 
generation of ROS, leads to so called “oxidative stress” (OS). 
The RS can also interact and damage cellular macromolecules 
such as nucleic acid, protein and lipids [12-17].  

 Cysteine residues and protein bound metals, including 
heme iron are the primary targets of ROS, as it readily 
(reversibly or irreversibly) oxidized to a disulfide bond  
(–SSR), sulfenic acid (–SOH), sulfinic acid (–SO2H) or 
sulfonic acid (–SO3H) [18, 19]. Cysteine residue containing 
signaling enzymes and proteins include phospholipase C [20, 
21], phospholipase A2 [22, 23] and phospholipase D [24]. 
Ion channels [25, 26], including calcium channels [27], have 
been proposed as potential target for ROS. Further, signaling 
mechanisms that respond to changes in the thiol/disulfide 
redox state, such as Src family kinase [28, 29], MAPKs [30, 
31], activator protein-1 (AP-1) [32] and nuclear factor-�B 
(NF-�B) [33] transcription factors can also be targets.  

 Apart from deleterious nature, ROS play central role in 
intracellular signal transduction pathways for variety of 
pathophysiological cellular responses and pathophysiology 
of various diseases such as acute respiratory distress syndrome 
[34], aging [35], Alzheimer [36, 37], atherosclerosis [38], 
cancer [39-41], cardiovascular diseases [42, 43], diabetes 
[44], inflammation [45], inflammatory joint diseases [46], 
neurological diseases [47], obesity [48, 49], Parkinson [50], 
pulmonary fibrosis [51], rheumatoid arthritis [52], and 
vascular diseases [53, 54]. 

 Since, endogenous antioxidant defense system is not 
always completely effective and there is continuous exposure to 
various environmental factors hence, there is always a need 
to search new drug candidates to counter oxidative damage. 
In this quest, co-administration of antioxidant enzyme 
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system and non-enzymatic antioxidant or their integration or 
covalently attachment with existing drug candidates played a 
pivotal role. A number of fruits, vegetables such as citrus 
fruits, berries, apple, grapes, onion, beans and their 
fermented products have been abundant source of potential 
antioxidants and their uses on regular basis may counteract 
ROS and decrease rate of oxidative stress induced diseases 
such as neurodegeneration, cardiovascular diseases, cancer 
and many more [55-66]. In this context, antioxidant hybrid 
approach may provide possibilities for generating a diverse 
array of new types of molecules as promising therapeutic 
agents in oxidative stress induced diseases.  

BIOLOGICAL EFFECTS OF ANTIOXIDANTS AND 

THEIR MECHANISM 

 A variety of enzymatic and non-enzymatic antioxidants 
have been investigated from natural or unnatural origins with 
potential role in the biological systems. Mainly following 
three mechanism of action have been proposed of 
antioxidants against RS induced oxidative damage: - (i) 
modulation of signaling pathways that mediated gene 
regulation in response to ROS, (ii) quenching of free 
radicals, (iii) direct chemical interaction of the antioxidant 
with signaling enzymes and transcription factors [67]. The 
mechanism of some of the important antioxidants is 
discussed here. The �-tocopherol is an important antioxidant 
which plays a vital role in various inflammations and it 
directly binds with phospholipase A2 (PLA2) [68]. At the 
same time, it leads to modulation of NADPH oxidase, 
protein kinase C (PKC), protein kinase B (PKB) via 
inhibition of subunit assembly [69-72]. The trans retinoic 
acid regulates the physiology of cells differentiation and 
apoptosis via direct binding with protein kinase C (PKC� 
and PKC�) [73, 74]. Similarly, ascorbic acid potentiates 
enzymatic degradation of hypoxia inducible factor-1 (HIF-
1�) via proline and asparagine hydroxylase [75]. Curcumin 
is another important antioxidant which has attracted various 
research groups in recent times and it has been observed that 
it modulates PKC, NF-�B and AP-1 by direct binding [76, 
77], and by inhibition of I�B� proteasome [78, 79] and Fos-
Jun-DNA complex formation [80]. Resveratrol modulate  
c-Src, PK (by direct binding) [81], NF-�B (by inhibition of 
the pathway and/or of I�B� proteasome degradation) [82, 
83], and AP-1 by the alteration in its composition [84]. 
Inhibition of NADP oxidase subunit translocation by 
epigallocatechin gallate imparts its mast stabilizing and 
antiallergic activity [85]. Flavonoids regulate RTK, MAPKs, 
PI3K/Akt by direction action [86-89], and modulation of 
NF-�B (by inhibition of the pathway and/or of I�B� 
proteasome degradation) [90]. Anti-inflammatory effects of 
kaempferol and quercetin are exerted by direct binding with 
vascular cell adhesion molecule-1 (VCAM-1), intercellular 
adhesion molecule-1 (ICAM-1), endothelial cell selectin (E-
selectin), inducible NO synthase (iNOS) and cyclo-
oxygenase-2 (COX-2) [91]. GSH plays its crucial role 
against oxidative damage via S-glutathionylation of PKCs 
[92], MAPKs [93], IKK�, p65, NF-�B [94, 95] and p53 [96]. 
Apart from these molecular targets there is another important 
pathway which plays an important role in oxidative stress. 
Nrf2 is a nuclear transcription factor that controls the 
expression and coordinates induction of a battery of 

defensive genes encoding detoxifying enzymes and 
antioxidant proteins. This mechanism is of critical 
importance for cellular protection and cell survival. Nrf2 is 
retained in the cytoplasm by an inhibitor (INrf2) which 
functions as an adapter for Cul3/Rbx1-mediated degradation 
of Nrf2. In response to oxidative/ electrophilic stress, Nrf2 is 
switched on and then off by distinct early and delayed 
mechanisms. Oxidative/ electrophilic modification of INrf2 
cysteine 151 and/or protein kinase C phosphorylation of 
Nrf2 serine 40 results in the escape or release of Nrf2 from 
INrf2. Nrf2 is stabilized and translocates to the nucleus, 
forms heterodimers with unknown proteins, and binds the 
antioxidant response element, which leads to the coordinated 
activation of gene expression. The switching on and off of 
Nrf2 protects cells against free radical damage, prevents 
apoptosis, and promotes cell survival. Recently, various 
antioxidants such as curcumin, caffeic acid, resveratrol, 
lipoic acid, catechin and their derivatives result in up-
regulation of Nrf2 in various in vitro and in vivo models [97-
115] and Nrf2 have been found as an important activator of 
phase II antioxidant genes.  

ANTIOXIDANT HYBRIDS APPROACH 

 Hybrid systems are construction of different molecular 
entities from natural or unnatural origin to transform or 
augment different entities or to generate a molecule with 
bifunctional feature with new properties. This design of 
antioxidant enzymes or non-enzymatic antioxidant conjugation 
with other bioactive molecules/ drug used in oxidative stress 
induced diseases might be helpful to increase the potencies 
and diversity of drug candidates/ molecules [116]. 

Hybrids based on 1, 2-dithiolone Moiety 

 Alpha-lipoic acid (ALA), also known as 1, 2-dithiolane-
3-pentanoic acid, is a natural antioxidant that scavenges 
reactive oxygen species (ROS) and regenerates or recycles 
endogenous antioxidants, and exists as R- and S-enantiomeric 
forms. However, only R-LA is conjugated to conserved 
lysine residues in an amide linkage of the mitochondrial 
multi-enzyme complexes that catalyze the oxidative 
decarboxylation of �-keto acids (e.g. pyruvate dehydrogenase, 
2-oxo-glutarate dehydrogenase, and transketolase) and 
glycine cleavage, thus plays a critical role in mitochondrial 
energy metabolism. ALA 1 is readily taken up and reduced 
in cells and tissues to dihydrolipoic acid 2 (DHLA), and 
exert oxidative protection in both intracellular and 
extracellular environments (Fig. 1). Furthermore, they have 
also been involved in regeneration of other antioxidants 
(vitamin C and vitamin E) via redox coupling and increase 
intracellular glutathione levels [117-119]. Thiol functionality 
of glutathione has been proposed for major contributor to 
oxidative defense in brain, but glutathione cannot be directly 
administered whereas, �-LA can be administered directly. In 
vitro, animal, and preliminary human studies indicate that 
alpha-lipoate may be effective in numerous neurodegenerative 
disorders [120].  

(a) Hybrids with 1, 2-dithiolone Moiety as Neuroprotective 

Agent 

 In an effort to design potential neuroprotective agents 
with 1, 2-dithiolone scaffold, Koufaki M. and co-workers 
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conjugated ALA 1 with catechol 3 and were screened on 
glutamate-challenged hippocampus HT22 cells [121]. 
Interestingly, neuroprotective potential were increased on 
bioisosteric replacement of the amide group with 
heteroaromatic rings such as triazole, 1, 2, 4-oxadiazole, 1, 3, 
4-oxadiazole, tetrazole or thiazole 4a-e in comparison to 
parent ALA (Fig. 2). Similarly, bioisosteric replacement of 
amide functionality with heteroaromatic ring in LA-chroman 
conjugates 5 were done to observe the influence in oxidative 
stress-induced cell death of glutamate-challenged HT22 
hippocampus neurons by Koufaki M. and co-workers [122]. 
The results showed that in case of 4d (EC50 2.99±0.14 �M) 
and 5, the effect of housing a hetero aromatic ring and free 
phenolic moiety in one molecule gives synergistic effect 
rather than additive (Fig. 2). 
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Fig. (1). Structures of ALA (1) and dihydrolipoic acid (2).  
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Fig. (2). Chemical structures of ALA and catechol (3) hybrids (4a-

4e and 5). 
 
 Cholinesterase enzyme (Acetylcholinesterase, AChE and 
Butyrylcholinesterase, BuChE), are key regulators of 
acetylcholine level in synaptic region, and have significant 
contribution in many neurodegenerative disorder especially 
in Alzheimer’s disease (ADs). Recognizing the importance 
of polyphenolic moiety in many biologically active natural/ 
synthetic products, and their well establish neuroprotective 
ability, Woo, Y.J. et al. have crafted LA-polyphenolic 
hybrids and concluded that cinnamate based polyphenolic 
compounds were potential cholinesterase inhibitor, which 
might be due to the presence of �,�-unsaturated carbonyl 
moiety [123]. Acetylated caffeic acid conjugate 6 was ~800 
fold selective inhibitor of BuChE (IC50 = 0.5±0.2 �M and Ki 

= 1.52±0.18 �M) over AChE (Fig. 3). In another report, 
Decker, M. et al. designed [2, 1-b] quinazolinimines 7 and �-
LA 1 hybrids connected through varying length of methylene 
spacer (n = 2-6) [124] (Fig. 4) and it was observed that 
spacer chain length is proportional to selectivity towards 
BuChE. The hybrid bearing octamethylene spacer 8 exhibit 
~10 fold and ~1000 fold more potent AChE and BChE 
inhibitory activity in contrast to parent quinazolinimines, 
respectively.  
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Fig. (3). Structure of ALA - acetylated caffeic acid hybrid (6). 
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Fig. (4). Chemical structures of quinazolinimines (7) and ALA - 
quinazolinimines hybrid (8). 
 

(b) Hybrids with 1, 2-dithiolone Moiety as Cardioprotective 

Agent 

 Coronary artery occlusion results from the deposition of 
fatty materials or damage to vasculature endothelial lining, 
leading to myocardium infraction. In general, treatment of 
acute myocardial ischemia involves the use of either 
thrombolytic agents or percutaneous transluminal coronary 
balloon angioplasty (PTCA), which effectively restores 
blood flow to the myocardium and reduce overall mortality. 
However, these therapies do not protect the heart from the 
damage caused by ROS, produced upon the readmission of 
oxygenated blood into the ischemic myocardium (reperfusion). 
Furthermore, it was found that oxygen free radicals react 
with the phospholipid components of the myocardium and 
affecting the selective permeability of cell membranes, thus 
resulting in the development of life threatening ventricular 
arrhythmias and/or fibrillation. On the other hand, 
experimental findings support the hypothesis that lipid 
peroxidation inhibitors such as vitamin E protect the 
myocardium from I/R injury [125]. In order to explore the 
role of lipoic acid on cardiovascular damage, Koufaki, M. et 
al. conjugate ALA 1 with trolox 9 (6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid), an analogue of 
vitamin E 10, and evaluated for the lipid peroxidation 
inhibition and antioxidant capacities (measured as contents 
of malondialdehyde) [126] (Fig. 5). Lipoic acid substitution 
with amide functionality at C-2 and C-5 position by 
methylene spacer 11a-b and 12-15, were assessed as 
essential feature in order to total suppression of reperfusion 
arrhythmias while, compounds with direct attachment on C-4 
position 13 and trolox/lipoic acid mixture reduced the 
arrhythmia score by 63.5% and 53%, respectively. 
Furthermore, antioxidant and inhibitory lipid peroxidation 
capacity of hybrid compounds were comparable to trolox/ 
lipoic acid mixture. 

(c) Hybrids with 1, 2-dithiolone Moiety as Radioprotective 

Agent 

 Melatonin (N-acetyl-5-methoxytryptamin) 16, a pineal 
gland hormone which regulates circadian rhythms, critically 
controls the sleep-wake cycle [127] and also has the capacity 
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to protect nuclear and mitochondrial DNA from oxidative 
damage [128]. Furthermore, significant application in cancer, 
immune disorders, cardiovascular diseases, depression, 
seasonal affective disorder (SAD), circadian rhythm sleep 
disorders, and sexual dysfunction make it interesting 
biomolecule. The radioprotective activity of melatonin 
was increased by conjugating 1, 2-dithiolane moiety 
(ALA) with melatonin to form new hybrid molecule 
melatoninolipoamide 17 [129] (Fig. 6). Pulse radiolysis 
induced one-electron oxidation and reduction of 17 showed 
that the melatonin moiety in the conjugate is more 
susceptible for the oxidation whereas, the lipoic acid moiety 
for the reduction.  
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Fig. (6). Structures of melatonin (16), melatoninolipoamide (17). 
 
(d) Hybrids with 1, 2-dithiolone Moiety as Anti-

Inflammatory Agent 

 In recent years, role of antioxidants are well established 
in combating inflammatory disorders. There are many hetero 
aromatic ring containing compounds from natural and 

synthetic origin, which have been shown potential 
inflammation inhibitory activity [130-135]. In view of fact 
that, hetero aromatic ring conjugates with lipoic acid via 
amide linkage might give potential drug candidates, number 
of molecules like quinolinone-3-aminoamides 18 [136] and 
coumarin-3-aminoamides 19 [137] were conjugated with 
lipoic acid and tested for their inhibitory ability to 
lipoxygenase (LOX %, 0.1 mM) and Carrageenan rat paw 
edema (CPE %, 0.01 mmol/Kg body weight) (Fig. 7). The 
results indicated that compounds with aromatic diamine 
(especially 1, 2-phenylene diamine) were more potent in 
comparison to aliphatic diamine while, vice versa in case of 
%LOX inhibition. Lipoxygenase inhibitory capacities of 
quinolinone-3-aminoamides-lipoic acid hybrid 20 were 
observed higher (100%) in comparison to corresponding 
parent amino amides while, vice versa in case of CPE 
inhibition. In case of CPE inhibition %, coumarin-3-
aminoamides-lipoic acid hybrid 21 was observed more 
potential (73%) in comparison to corresponding parent 
amino amides while, vice versa in case of %LOX inhibition.  

Hybrids based on �,�-Unsaturated Carbonyl Moiety  

 �,�-unsaturated carbonyl moiety bearing compounds 
comprise a wide group of naturally occurring compounds 
like coumarin (benz-�-pirone) 22, flavones 23, chalcone 24, 
and curcumin 25 (Fig. 8). A remarkable array of biological 
activities and low toxicity of these compounds give them a 
special place in nature. The mode of biological action of this 
class of compounds has long been believed to be due to their 
interaction with thiol groups of enzymes via Michael 
addition at ketovinyl double bond [138]. The SAR studies 
showed that electron withdrawing (EW) group is favorable 
because it increases the electrophilicity of the C-� bond and 
thus facilitate the nucleophilic attack of the cellular thiol 
groups and opposite is true for the electron donating (ED) 
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Fig. (5). Structures of trolox (9), vitamin E-trolox hybrid (10) and trolox-lipoic acid hybrids (11a-11b, 12, 13, 14 and 15). 
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groups. Coumarin (1, 2-benzopirone) is one of the important 
class of �,�-unsaturated carbonyl group and several natural 
and synthetic coumarins have been found to exhibit variety 
of pharmacological activities like anti-HIV, anticoagulant, 
antibacterial, antioxidant, anti-inflammatory, and fluorescent 
labeling [139-146].  

(a) Hybrids with �,�-Unsaturated Carbonyl Moiety as 
Anticancer Agent 

 Among the diverse biological activities of coumarin, the 
most intriguing bioactivity is the effect against breast cancer 
[147-150]. Tamoxifen 26 is a selective estrogen receptor 
modulator (SERM) and used thoroughly in breast cancer for 
more than three decades [151]. The side effects and drug 
resistance are major concerns of tamoxifen [152-154]. 
Recently, 667 COUMATE 27 and neo-tanshinlactone 28 are 
in phase I clinical trials with increase in 10-fold potency and 
20-fold selectivity in comparison to Tamoxifen 27 [155-
157]. In order to explore role of �,�-carbonyl moiety in 
cancer, Sashidhara, K.V. et al. synthesized a series of 
coumarin-chalcone hybrids and evaluated their cytotoxic 
potential against KB (Oral squamous cell carcinoma), C33A 
(cervical carcinoma), MCF-7 (Breast adenocarcinoma), 
A549 (lung) and normal mouse embryo fibroblast [158]. 
Overview of the results proposed that a chalcone-coumarin 
hybrid with electron withdrawing group 29 was more potent 
in comparison to parent coumarin (Fig. 9). 

 The structure activity relationship (SAR) studies of 
various anticancer agents auspicate that methoxy group is 
one of important functional group responsible for cytotoxic 
potency and it was backed by significant role of 
resveratrol (3,5,4'-trihydroxy-trans-stilbene) 30, and 
3,4,5,4’-tetramethoxystilbene (DMU-212, 31) in various 
types of cancer. In this context, Belluti, F. et al. have 

inserted substituted trans-vinylbenzene moiety on coumarin 
backbone and screened for antiproliferative activity against 
lung carcinoma H460, squamous cell carcinoma A431 and 
melanoma JR8 [159]. The 3,5-dimethoxy- 32a and 3,5-
dimethylstilbin 32b substitution on 7-methoxycoumarin 
scaffolds at C-4 position was found to exert optimum 
inhibitory action against H460 (0.45±0.09 �M), A431 (3.44 
�M) and JR8 (3.2, 3.5 �M) (Fig. 10). 

 Estrogens (oestrogen) are primary female sex hormone, 
which stimulate the proliferation of normal and malignant 
cells via induction of nucleic acid synthesis and activation of 
growth regulatory genes namely ER� and ER�. Steroidal 
framework of estradiol (E2) provide site of attachment of 
variety of substituents such as cytotoxic moieties, radioisotopes, 
dietary antioxidants, affinity and photo affinity-labeling 
groups, of which several E2 conjugates have advanced as 
synthetic ligands for targeting the ER [160-162]. In this 
direction, flavones and coumarins have been conjugated with 
ER to obtain hybrid molecules 33, 34 and it leads to 
enhancement of potency and selectivity towards ER� in 
comparison to estradiol [163, 164] (Fig. 11).  

 Aqueous solubility (log W) is an important consideration 
in formulation and development phase of drug candidates, as 
most of drugs are orally administered and is likely to hamper 
the bioavailability [165]. Various approaches have been 
employed to improve aqueous solubility such as salt 
formation, amino acid conjugate and prodrug approach. 
Paclitaxel, potential mitotic inhibitors, have been used in 
chemotherapy of patient suffering from lung, ovarian, breast 
cancer, and advanced forms of Kaposi’s sarcoma [166]. The 
complex structural feature of paclitaxel renders its 
hydrophobicity, allergic reaction and precipitation on 
aqueous dilution. Therefore, it is administered intravenously 
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Fig. (7). Structures of quinolinone-3-aminoamides (18), coumarin-3-aminoamides (19), quinolinone-3-aminoamides-lipoic acid hybrid (20) 
and coumarin-3-aminoamides-lipoic acid hybrid (21). 
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Fig. (8). Structures of coumarin (22), flavone (23), chalcone (24), and curcumin (25). 
 



Antioxidant Hybrid Compounds Mini-Reviews in Medicinal Chemistry, 2013, Vol. 13, No. 2    285 

with non-aqueous vehicle containing detergent like 
Cremophor EL [167]. Paclitaxel also have serious side 
effects such as unusual bruising or bleeding, pain/redness/ 
swelling at the injection site, fever, chills, cough, sore throat, 
difficulty in swallowing, dizziness, shortness of breath, 
severe exhaustion, skin rash, facial flushing, female infertility 
by ovarian damage [168], which enforce for further 
structural modification or develop new delivery systems to 
reduce its toxicity. In this direction, Noguchi, M. et al. prepared 
photoliable 7-N,N-diethylamino-4-hydroxymethyl coumarin 
(DECM) hybrid of paclitaxel 35 to improve water solubility 
along with enhancement of target specificity [169] (Fig. 12). 

 Fluorescent labeling involves covalent attachment of 
drug with antibodies, protein, amino acid, and peptide which 
are used as specific probes for detection of a particular target 

via fluorescence microscopy, flow cytometer or some other 
fluorescence reading instrument [170]. Commonly used 
fluorescent dyes are fluorescein, rhodamine, alexa fluors, 
dylight fluors, ATTO dyes (labeling of DNA, RNA and 
protein), BODIPY dyes (4,4-difluoro-4-bora-3a,4a-diaza-s-
indacene), and 6-FAM phosphoramidite. The presence of 
chromophore, �,�-unsaturated carbonyl moiety in coumarin 
and structure resemblance with fluorescent dyes imparts 
significant fluorescent characteristic to them. There are 
several examples such as 7-diethylaminocoumarin succinimidyl 
ester (DEAC-SE) 36, 7-amino-4-methyl coumarin-3-acetic 
acid 37 (AMCA) [171], sulfosuccinimidyl-2(7-azido-4-
methycoumarin-3-acetamido)-ethyl-1,3�-dithiopropionate 
(SAED) 38 [172], 7-hydroxycoumarinyl-3-glyoxal 39 (HOCGO), 
7-(dimethylamino)coumarinyl-3-glyoxal (DMACGO) 40 [173], 
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Fig. (9). Structures of tamoxifen (26), coumate (27), neo-tanshinlactone (28) and chalcone-coumarin hybrid (29). 
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286    Mini-Reviews in Medicinal Chemistry, 2013, Vol. 13, No. 2 Tailor and Sharma 

and 4-bromometyl-7-methoxy-coumarin 41 (BrMMC) [174] 
which shows wild applicability of coumarin and similar 
moieties in the biological fields. Recently in 2008, Wells, G. 
et al. observed supportive role of 7-diethylaminocoumarin in 
nuclear penetration on conjugation with sequence-selective 
DNA-targeting agents pyrrolo [2, 1-c] [1, 4] benzodiazepine 
(PBD) 42 via varying length of the spacer [175] (Fig. 13). 
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Fig. (12). Structure of 7-N, N-diethylamino-4-hydroxymethyl 
coumarin hybrid of paclitaxel (35). 
 

(b) Hybrids with �,�-Unsaturated Carbonyl Moiety as 
Cardioprotective Agent 

 Limited success of antiarrhythmic drugs in suppression 
of reperfusion arrhythmia and sudden cardiac death is due to 
the associated increased risk of proarrhythmia and lack of 
selectivity towards ion channels, which enforce to find out 
new drug candidates. The vitamin E has been shown 
protective role in myocardium from ischemia/ reperfusion 
(I/R) injury, but hydrophobicity impedes it to gain access to 
the intracellular compartment. In this context, Koufaki M. et 
al. have conjugated �-tocopherol (Vitamin E, 10) with class I 
antiarrhythmics namely procainamide 43 and lidocaine 44 in 
order to obtain bifunctional antiarrhythmic antioxidants 

[176]. The phytyl chain of vitamin E was replaced with 
different alkyl chain of one, six or twelve carbon atoms. 
Among procainamide (45a-c, 46a-c) only C-2 methyl 
substituted analogue 45a was able to decrease in premature 
beats (5±2 and 7±3.5 at 100 and 30 mM, respectively), in 
comparison to procainamide (5±3 and 6±2.5 at 100 and 30 
mM, respectively). Similarly, only 45a was able to increase 
in QRS intervals which were comparable to that of 
procainamide (45a: 60±6, 54±8 ms at 100 and 30 mM, 
respectively; procainamide: 66±10, 58±5 ms at 100 and 30 
mM, respectively). While both lidocaine analogues (47a-b) 
showed potential to decrease premature beats (47a: 7±2 and 
8±2.1 at 100 and 30 mM, respectively; 47b: 6±2.5 and 6±3 
at 100 and 30 mM, respectively) which was slightly less than 
lidocaine (4±3 and 5±3 at 100 and 30 mM, respectively). 
The hybrids 47a and 47b showed 100% inhibition of lipid 
peroxidation at 10 �M. At the same time, QRS intervals 
were comparable to parent drug lidocaine. Substitution at C-
5 position with methylene spacer between amino amide 
groups is key feature of these hybrids against reperfusion 
arrhythmias (Fig. 14).  

(c) Hybrids with �,�-Unsaturated Carbonyl Moiety as 

Antimicrobial Agent 

 Hepatitis C virus (HCV), the major etiological agent of 
the non-A non-B hepatitis, was identified at the molecular 
level at the end of the 1980s [177]. Presently, it is estimated 
that HCV infects more than 170 million people worldwide 
and thus represents a viral pandemic that is about five times 
more widespread than infection by the human 
immunodeficiency virus (HIV) [178]. RNA-dependent RNA 
polymerase (RdRP) is essential for viral replication and no 
functional equivalent in uninfected mammalian cells make 
validated drug target to block HCV replication with 
negligible associated toxicity [179]. Currently three classes 
of inhibitors are used namely; nucleoside analogues, non-
nucleoside inhibitors (NNIs) and pyrophosphate inhibitors. 
Non-nucleoside inhibitors include structurally heterogeneous 
compounds having benzimidazole 48, 49 [180, 181] and 
benzothiadiazine derivative 50 [182] (Fig. 15). In order to 
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Fig. (13). Structures of coumarin based fluorescent compounds (36-42).  
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optimize structure of benzimidazole based RNA-dependent 
RNA polymerase (RdRP) inhibitors against hepatitis C virus, 
Hwua, J.R. et al. synthesized a series of benzimidazole-
coumarin conjugates by one-flask methods and evaluated 
against hepatitis C virus [183]. The SAR analysis concluded 
that (a) introduction of a Br group on the coumarin ring (e.g., 
51b versus 51a) enhanced HCV inhibition by 6.7-fold and 
also the selectivity by 2.9-fold; (b) introduction of an -OMe 
group on the coumarin ring (e.g., 51d versus 51c) further 
improved the antiviral activity; (c) enhancement of the 
selectivity resulting from substitution in the coumarin 
nucleus (cf. 51d, 51a, and 51c) followed the order -OMe <H 
<Br; (d) incorporation of �-D-glucose peracetate moiety into 
the benzimidazole-coumarin conjugate (e.g., 51c versus 52) 
resulted in a 4.8-fold increase in anti-HCV activity (Fig. 16). 

(d) Hybrids with �,�-Unsaturated Carbonyl Moiety as 
Radical Quenching Agent 

 Fullerene also known as buckminsterfullerene is 
composed of C60 carbon exists in the form of a hollow sphere, 
ellipsoids, or tube. The ability of C60 and its derivatives to 
scavenge a large number of radicals per molecule [184, 185] 
makes them potential drug candidates in number of oxidative 
stress induced disorder, including cardiovascular [186, 187] 

and neurodegenerative diseases [188, 189]. Recently, 
researcher have succeeded in conjugation of fullerenes with 
number of radical scavenging agents such as flavonoids 53, 
54 [190], and quercetin 55, 56 [191]. In further 
advancement, Enes, R.F. et al. integrated 3, 5-di-tert-butyl-4-
hydroxyphenyl groups (BHT) with C60-flavonoid conjugate 
57-59 [192]. These hybrids 57-59 showed synergistic free 
radical scavenging ability (Fig. 17). 
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Hybrids based on Cinnamate Moiety 

(a) Hybrids with Cinnamate Moiety as Neuroprotective 

Agent 

 Presence of olefinic bond with carbonyl functionality in 
cinnamate based compounds such as cinnamic acid, ferulic 
acid, and synapic acid, impart wide range of biological 
applications. Tacrine is one of potential drug candidates used 
in neurodegenerative disorder like ADs. Further, structural 
optimization of tacrine 60 was done by conjugating with 
ferulic acid 61 via varying length of methylene spacer by 
Fang, L. et al. [193]. It was postulated that conjugation with 
octamethylene spacer 62 exhibited a reversible and non-
competitive inhibition to acetylcholinesterase (AChE) 
whereas, reversible and competitive inhibitory activity was 
observed to butyrylcholinesterase (BChE) with IC50 (nM) 
9.6±2.1 and 12.7±2.6 respectively. 

 (Fig. 18), Calpain is Ca+2-activated cysteine protease 
typically associated with cellular necrosis. One of the major 
causes of neurodegenerative disorder is ROS mediated 
activation of calpain, which is involved in various 
neurological disorders such as stroke, Parkinson’s disease 
and Alzheimer [194-198]. Lee, K.S. et al. has synthesized 
chromone carboxamide 63 and has shown potential calpain 
inhibitory activity [199]. To elucidate structural 
requirements for �-calpain inhibition, Yoo, Y.J. et al. 
synthesized acyclic variants of chromone ring in 63 by 
conjugating cinnamoyl functionality on �-position [200]. 
The potential role of acyclic variants of chromone 
carboxamide 64 against neurodegeneration and increasing 
role of cinnamate based compounds as neuroprotective 
agents, a series of cinnamoyl ketoamides were synthesized 
with varying substitution at �-position of ketoamides group. 
Calpain inhibitory activity was increased in order of propyl � 

isopropyl > ethyl � butyl as alkyl substituent at �-position of 
ketoamides group and hydroxyl group on aromatic ring 
system. Compound 65 showed most potent inhibitory 
activity (IC50 = 0.13 �M) against m-calpain and its potency 
was 4-fold higher than that of acyclic variant 64 (IC50 = 0.52 
mM) and 2-fold lower than that of parent compound 63  

(IC50 = 0.07 mM) (Fig. 19).  

(b) Hybrids with Cinnamate moiety as Cardioprotective 

Agent 

 Angiotensin converting enzyme (ACE) inhibitors are 
most widely used antihypertensive agents. Selective 
inhibition of Angiotensin-II (AT-II) by Sartans with absence 
of side effects (coughing) makes it superior over other ACE 
inhibitor. Garcia, G. et al. have synthesized polyphenolic 
compounds conjugate with losartan 66 [201]. Integration of 
phenolic functionalities on losartan improves 4-8 fold 
antioxidant capacity than losartan. Hybrids were less 
efficient to oppose binding of radiolabelled AT-II to receptor 
than losartan except 67a (41%) and 67b (40%) which 
exhibited equivalent potential as losartan (47%). The 3-(3,4-
dihydroxyphenyl) propionic acid was potential candidate 
among all integrated polyphenolic compounds and its 
structural resemblance with cinnamate based compounds 
revealed out that structural optimization of losartan with 
cinnamate based compounds might improve its basic 
properties as an AT-II receptor blocker (Fig. 20). 

(c) Hybrids with Cinnamate Moiety as Anticancer/Anti-
Inflammatory Agent 

 Nomura, E. et al. have synthesized gallic acid-ferulic 
acid ester and investigated their inhibitory effects on 12-O-
tetradecanoylphorbol-13-acetate (TPA)-induced Epstein-
Barr virus (EBV) activation and superoxide (O2
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Fig. (18). Structures of tacrine (60), ferulic acid (61) and tacrine-ferulic acid hybrid (62). 
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and 68 was observed promising chemopreventive agent 
[202]. Harpagoside 69, naturally occurring 
phenylpropanoids-conjugated iridoide glycoside have 
potential anti-inflammatory agent and structural 
characterization revealed that cinnamate moiety might be 
responsible for the activity. Takeda, Y. et al. conjugated 
cinnamate moiety on morroniside 70 (iridoide glycoside) and 
showed potential TNF-� induced E-selectin expression 
inhibition (IC50 = 49.3�M) over harpagoside (IC50 = 88.2�M) 
[203] (Fig. 21). 

Miscellaneous Hybrids 

 Various natural and synthetic polymers such as gelatin, 
albumin, cellulose, poly (2-hydroxyethyl methacrylate), 
chitosan, and polyethylene glycol (PEG) have wide range of 
pharmaceutical and biomedical applications, due to their 
biocompatibility, biodegradation, non toxicity, and non 
immunogenicity. Some of polymeric products, especially 
medical equipment and food packaging are sterilized by 
radiation, which results in potential risk of degradation (chain 
scission and/or cross linking, resulting in discoloration, 
cracking of the surface, stiffening, and loss of mechanical 
properties) [204]. Furthermore, protein composite polymers 
(i.e. gelatin, pectin) and poly (2-hydroxyethyl methacrylate 
(important constituents of contact lens) are liable to 
oxidative damage. Various strategies had been employed to 
protect these biomolecules from oxidative damage [205-

207]. Currently, grafting of antioxidant moiety on polymeric 
side chain has been used to overcome oxidative damage. 
Researcher have synthesized various polymeric-antioxidant 
combination like PEG-lipoic acid conjugates 71 [208], gallic 
acid-gelatin, catechin-gelatin [209], poly (2-hydroxyethyl 
methacrylate)-quercetin [210], catechin-alginate 72, 
catechin-inulin 73 [211] and chitosan-gallic acid 74 [212] via 
grafting and other technique. These hybrids were synthesized 
with an aim to improve physical, chemical and biological 
properties of polymers. The improvement in radical 
scavenging capacity of antioxidant polymer in comparison to 
parent polymer indicated that covalent attachment of 
antioxidant moieties with polymer might improve their 
oxidative resistance and introduce new features for specific 
applications in pharmaceutical, cosmetic and food industry 
(Fig. 22).  

STRUCTURE-ACTIVITY RELATIONSHIP (SAR) 

ANALYSIS OF ANTIOXIDANT HYBRID 

COMPOUNDS 

 From above mentioned detailed investigation, it was 
concluded that many antioxidant hybrid compounds have 
been synthesized and observed significant and to moderate 
range of biological action in comparisons to parent 
compounds. Some key structure activity relationship features 
are as under:- 
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1) The presence of 1, 2-dithiolone functionality is 
important for neuroprotective action. 

2) Numbers of free phenolic functionality are proportional 
to their radical quenching capacity. 

3) Insertion of �,�-unsaturated carbonyl moiety in 
compounds impart wide range of biological application. 
The presence of electron withdrawing groups impart 
electrophilicity of C-� carbon which results in enhance 
Michel interaction with cellular/enzymatic thiol groups.  

4) Potential role of cinnamate based compounds in 
neuroprotection, antimicrobial and inflammation again 
showing the role of double bonds and carbonyl 
functionality in bioactivity.  

CONCLUSIONS 

 Natural products play an important role in the 
development of drugs, especially for the treatment of 
infections and cancer, as well as immunosuppressive 
compounds. However, the number of bioactive natural 
products is limited, whereas millions of hybrids by 
combinations of different natural products can be prepared. 
This new approach seems to be very promising in the 
development of leads for both medicinal and agrochemical 
applications, as the biological activity of several new hybrids 
exceeds that of the parent compounds. The advantage of this 
concept over a combinatorial chemistry approach is the high 
diversity and the inherent biological activity of the hybrids. 
The possibilities of generating hybrid systems of creating 
molecular diversity through either domain integration or 
covalent connection of two or more diver’s entities are 
almost unlimited. Artificial natural product hybrids have not 
yet been used as drugs, as this idea is quite new, but several 
novel compounds of this type developed in the last few years 
show promising biological activity. 

 Recent success of antioxidant hybrid compounds as 
promising therapeutic intervention in oxidative stress 
induced diseases will continue to engage the attention of 
organic chemist. From recent research it can be inferred that 
hybrid compounds have shown significant to moderate level 
of activities in comparisons to parent compounds and there is 
need of further optimization of pharmacophore to make these 
compounds as drug like molecules.  
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